9 research outputs found

    The Eighth Central European Conference "Chemistry towards Biology": snapshot

    Get PDF
    The Eighth Central European Conference "Chemistry towards Biology" was held in Brno, Czech Republic, on 28 August – 1 September 2016The Eighth Central European Conference "Chemistry towards Biology" was held in Brno, Czech Republic, on 28 August-1 September 2016 to bring together experts in biology, chemistry and design of bioactive compounds; promote the exchange of scientific results, methods and ideas; and encourage cooperation between researchers from all over the world. The topics of the conference covered "Chemistry towards Biology", meaning that the event welcomed chemists working on biology-related problems, biologists using chemical methods, and students and other researchers of the respective areas that fall within the common scope of chemistry and biology. The authors of this manuscript are plenary speakers and other participants of the symposium and members of their research teams. The following summary highlights the major points/topics of the meeting

    PDBe-KB: a community-driven resource for structural and functional annotations.

    Get PDF
    The Protein Data Bank in Europe-Knowledge Base (PDBe-KB, https://pdbe-kb.org) is a community-driven, collaborative resource for literature-derived, manually curated and computationally predicted structural and functional annotations of macromolecular structure data, contained in the Protein Data Bank (PDB). The goal of PDBe-KB is two-fold: (i) to increase the visibility and reduce the fragmentation of annotations contributed by specialist data resources, and to make these data more findable, accessible, interoperable and reusable (FAIR) and (ii) to place macromolecular structure data in their biological context, thus facilitating their use by the broader scientific community in fundamental and applied research. Here, we describe the guidelines of this collaborative effort, the current status of contributed data, and the PDBe-KB infrastructure, which includes the data exchange format, the deposition system for added value annotations, the distributable database containing the assembled data, and programmatic access endpoints. We also describe a series of novel web-pages-the PDBe-KB aggregated views of structure data-which combine information on macromolecular structures from many PDB entries. We have recently released the first set of pages in this series, which provide an overview of available structural and functional information for a protein of interest, referenced by a UniProtKB accession

    Ion binding to quadruplex DNA stems. Comparison of MM and QM descriptions reveals sizable polarization effects not included in contemporary simulations

    No full text
    Molecular mechanical (MM) force fields are commonly employed for biomolecular simulations. Despite their success, the non-polarizable nature of contemporary additive force fields limits their performance, especially in long simulations and when strong polarization effects are present. Guanine quadruplex D(R)NA molecules have been successfully studied by MM simulations in the past. However, the G-stems are stabilized by a chain of monovalent cations which create sizable polarization effects. Indeed, simulation studies revealed several problems which have been tentatively attributed to the lack of polarization. Here we provide a detailed comparison between quantum-chemical (QM) DFT-D3 and MM Potential Energy Surfaces of ion binding to G-stems and assess differences which may affect MM simulations. We suggest that MM describes binding of a single ion to the G-stem rather well. However, polarization effects become very significant when a second ion is present. We suggest that the MM approximation substantially limits accuracy of description of energy and dynamics of multiple ions inside the G-stems and binding of ions at the stem-loop junctions. The difference between QM and MM descriptions is also explored using symmetry-adapted perturbation theory and Quantum Theory of Atoms in Molecules analyses, which reveal delicate balance of electrostatic and induction effects
    corecore